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In this paper the asymptotic boundary condition (ABC) of 1-D model atom in the
intense laser field at the spatial sufficiently far distance is presented using Fourier trans-
formation on the condition that the initial state is local and the atomic potential in the
model falls off rapidly. On the basis of this ABC, the symplectic algorithm is developed
for computing the model atom in the intense laser field. The ABC and symplectic algo-
rithm are applied to compute the ionization behaviors for 1-D Pöschl–Teller short-range
potential. The numerical results illustrate that the ABC and the symplectic algorithm
presented are reasonable and effective for 1-D model atom in the intense laser field.
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1. Introduction

With the rapid development of the laser technique, the theoretical research
on the interaction between the intense laser and matter, such as the explanation
for the new experimental phenomena, the prediction for the behavior and the law
of the matter in the stronger laser field that are not realized in the lab and etc,
are attractive [1]. The research on the interaction between the intense laser and
atom includes both the electron emission in the laser field (for example, the mul-
tiphoton ionization [2], the tunneling ionization [3] and so on) and the photon
emission (for example, the high harmonic generation [4]).

When the intensity of the laser field reaches up to 1013 Wcm−2, the
traditional perturbative theory in quantum mechanics will be invalidated for the
interaction between the laser and atom [5]. In the past decade, various nonper-
turbative methods have been developed and adopted, i.e., Floquet theory method
[6], R-matrix method [7], etc, but these methods cannot be applied to the super-
short and super-intense laser field. The methods solving directly numerically
time-dependent Schrödinger equation (TDSE) have been applied to describe the
interaction between the super-short and super-intense laser and atom, that is,
TDSE is directly discretized using finite difference [8], discrete variable represen-
tation [9], finite elements [10], B splines [11] or a basis set expansion approach.
In the basis set expansion approach, the basis function set may be chosen as the
eigenstate of free-field [12,13], Volkov state [14] and so on.

When one of the finite difference method, the finite elements method and
B splines function method is applied to solve numerically TDSE, it is necessary
to truncate at the spatial sufficiently far distance and to choose the appropriate
boundary condition. Because the laser field is stronger, the wave function at the
spatial sufficiently far distance cannot be simply given as 0. In the previous liter-
ature, the various boundary conditions [15–17] have been developed and adopted
on the basis of the theoretical analysis for the physical problem.

In this paper the asymptotic boundary condition (ABC) of 1-D model atom
in the intense laser field at the spatial sufficiently far distance is presented using
Fourier transformation under the condition that the initial state is local and
the atomic potential falls off rapidly (Section 2). Using ABC the infinite spa-
tial initial value problem of TDSE for 1-D model atom in the intense laser
field is truncated into the finite spatial initial-boundary value problem, and this
initial-boundary problem is numerically solved using the symplectic algorithm
(Section 3), and thus the symplectic algorithm is extended from solving the time-
independent problem [18–20] to solving the time-dependent problem. Then the
ABC and the symplectic algorithm are applied to compute the ionization prob-
ability, the population probability of each bound states and continuum and the
Rabi oscillation for 1-D model Pöschl–Teller (P–T) potential in the intense laser
field (Section 4). The results illustrate that the ABC and the symplectic algorithm
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presented are reasonable and effective for 1-D model atom in the intense laser
field.

2. Asymptotic boundary conditions

In the length gauge and the electric-dipole approximation, the interaction
between 1-D model atom and the intense laser field is described by the initial
value problem of TDSE (we will use atomic units hereafter unless it is mentioned
specifically)

i
�

�t
ψ(x, t) =

[
−1

2
�2

�x2
+ V0(x)+ ε(t)x

]
ψ(x, t),

(−∞ < x < ∞, 0 � t � T ) (1)∫ ∞

−∞
|ψ(x, t)|2 dx = 1, (0 � t � T ) (2)

ψ(x, 0) = ϕ(x)

∫ ∞

−∞
|ϕ(x)|2 dx = 1, (−∞ < x < ∞) (3)

where the laser field is linearly polarized, and ε(t)x = f (t)ε0x sin(ω0t) is the
interaction between the laser and atom, where ε0 is the peak amplitude of the
laser field, f (t) is the pulse-shape, T is the pulse width and ω0 is the frequency
of the laser field. The initial state ϕ(x) is local, the atomic potential V0(x) is local
or falls off rapidly, that is to say, for a sufficiently large parameter X0 > 0, when
|x| > X0, ϕ(x) = 0 and V0(x) = 0 or |V0(x)| � |ε0x|. Because the interaction
between laser and atom is greater than the atomic potential |ε0x| � |V0(x)| at
the spatial sufficiently far distance, the atomic potential V0(x) can be neglected
in the equation (1). When x is sufficiently large, the solution ψw(x, t) of
TDSE

i
�

�t
ψ̃(x, t) =

[
−1

2
�2

�x2
+ ε(t)x

]
ψ̃(x, t) (−∞ < x < ∞, 0 � t � T ) (4)

satisfies the conditions (2) and (3), and it is asymptotic to the solution of the
initial value problem (1)–(3), thus it, called the ABCs, can be taken as the
boundary condition of 1-D model atom in the intense laser field at the spatial
sufficiently far distance x � R, where R is the boundary satisfying the physical
meaning and R > X0 > 0. By Fourier transformation and simplification, the ini-
tial value problem (3) and (4) is transformed into

i
� ˆ̃
ψ(ω(t), t)

�t
− iε(t)

� ˆ̃
ψ(ω(t), t)

�ω(t)
= 1

2
ω2 ˆ̃
ψ(ω(t), t), (5)
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ˆ̃
ψ(0, ω(0)) = ϕ̂(ω(0)), (6)

where ˆ̃
ψ = F [ψ̃ ] is the Fourier transformation of ψ̃(x, t), ω(t) is a formal vari-

able during the Fourier transformation and ω(0) is the initial value of ω(t). The
solution ˆ̃

ψ(ω(t), t) of the initial value problem (5) and (6) can be easily solved
by inverse Fourier transformation

ψw(x, t) = 1 − i

2
√
πt

exp
(
iA(t)x − i

2
q(t)

) ∫ ∞

−∞
ϕ(x ′) exp

(
i(x − α(t)− x ′)2

2t

)
dx ′

(7)

which is just the wave function of the free electron in the laser field (Volkov wave
function) [21], where A(t) = − ∫ t

0 ε(t
′)dt ′, A(0) = 0; q(t) = ∫ t

0 A
2(t ′)dt ′, α(t) =

− ∫ t
0 A(t

′) dt ′. When |x| > X0, ϕ(x) = 0, then

ψw(x, t)= 1 − i

2
√
πt

exp
(
iA(t)x − i

2
q(t)

) ∫ X0

−X0

ϕ(x ′) exp
(
i(x − α(t)− x ′)2

2t

)
dx ′

(8)

is the ABC of 1-D model atom in the laser field at the spatial sufficiently far
distance x,

ψ(x, t) = ψw(x, t) (|x|>X0). (9)

Furthermore, when x > X0, the integrated function of the formula (8) vibrates
drastically, and the value of the formula (9) is obtained using the numerical
integrated method for the drastically vibration function. From the calculation
results, we find that the integrated value is small but not zero, as has an impor-
tant physical meaning and is a warrant of zero boundaries. We may assure the
small distance of the zero boundaries from (9). We don’t adopt the zero bound-
aries but ABC in our calculation for the sake of the numerical precise.

3. Symplectic algorithm for 1-D model atom in the intense laser field

When the infinite space (−∞,∞) is truncated into the finite space [−R,R]
using the formula (9), the initial value problem (1)–(3) in the infinite space is
transformed into the initial-boundary value problem in the finite space

i �
�t ψ(x, t) =

[
− 1

2
�2

�x2 + V0(x)+ ε(t)x
]
ψ(x, t), (−R � x � R, 0 � t � T ), (1′)

ψ(x, t) = ψw(x, t) (|x| � R, 0 < t � T ), (2′)

ψ(x, 0) = ϕ(x)
∫ R
−R |ϕ(x)dx| = 1 (−R � x � R). (3′)
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Let ψ(x, t) = a(x, t) + ib(x, t) and V (x, t) = V0(x) + ε(t)x. For a sufficiently
large natural number N and the spatial step h = R/N , xj = jh, j = −(N + 1),
−N, . . . ,−1, 0, 1, . . . , N, (N+1) denotes the spatial discrete node. From the for-
mula (9), we have

ψw(−x−N−1, t) = a−N−1(t)+ ib−N−1(t), ψw(xN+1, t) = aN+1(t)+ ibN+1(t)

ψw(−x−N, t) = a−N(t)+ ib−N(t), ψw(xN, t) = aN(t)+ ibN(t)

(10)

The spatial partial derivative �2/�x2ψ(xj , t) of TDSE (1′) is substituted by the
central differential �2ψj/�x2

j = −(ψj−2 −16ψj−1 +30ψj −16ψj+1 +ψj+2)/(12h2),
the equation (1′) and the boundary conditions (2′) are discretized into the
canonical equation

{
Ȧ = SB + Y2,

Ḃ = −SA− Y1,
(11)

where
A = (a−N+1, . . . , aN−1)

T , B = (b−N+1, . . . , bN−1)
T , Y1 = 1

24h2

(
a−N−1 −

16a −N, a−N , 0, . . . , 0, aN,−16aN + aN+1
)T

, Y2 = 1
24h2 (b−N−1 − 16b−N ,

b−N, 0, . . . , 0, bN,−16bN + bN+1)
T , where the superscript T denotes the matrix

transpose, S = U + V ,

U = 1
24h2




30 −16 1 0
−16 30 −16 1

1 −16 30 −16 1
. . .

. . .
. . .

. . .
. . .

1 −16 30 −16 1
1 −16 30 −16

0 1 −16 30



,

V =



V (x−N+1, t) 0

. . .

0 V (xN−1, t)


 .

Let Z = (AT , BT )T , Y = (Y T1 , Y
T
2 )

T , the canonical equation (11) can be rewritten
as

Ż = GZ + JY = JCZ + JY. (12)

It is obvious that S and C=
[
S 0
0 S

]
are both real symmetric matrixes, J=

[
0 I

−I 0

]
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is the standard symplectic matrix, G =
[

0 S

−S 0

]
= JC is an infinitesimal sym-

plectic matrix. Hamiltonian function of the system is

H(B,A, t) = 1
2B

T SB + YT2 B + 1
2A

T SA+ YT1 A = H1(B, t)+H2(A, t) (13)

This is a separable Hamiltonian system. Hence the canonical equation (11) or
(12) can be numerically solved using the symplectic schemes of the separable
Hamiltonian system, for example, the 4-stage fourth-order explicit symplectic
schemes

µ1 = Bk − c1τH1A|tk ,Ak , ξ1 = t k + c1τ ; ν1 = Ak + d1τH2B |ξ1,µ1 , ζ1 = t k + d1τ ;
µ2 = µ1 − c2τH1A|ζ1,ν1 , ξ2 = ξ1 + c2τ ; ν2 = ν1 + d2τH2B |ξ2,µ2 , ζ2 = ζ1 + d2τ ;
µ3 = µ2 − c3τH1A|ζ2,ν2 , ξ3 = ξ2 + c3τ ; ν3 = ν2 + d3τH2B |ξ3,µ3 , ζ3 = ζ2 + d3τ ;
Bk+1 = µ3 − c4τH1A|ζ3,ν3 , ξ4 = ξ3 + c4τ ; Ak+1 = ν3 + d4τH2B |ξ4,Bk+1 , ζ4 = ζ3 + d4τ.

(14)

where the H1A and H2B are the partial derivation for A and B, respectively, and
α=(2 − 21/3)−1, β=1 − 2α; c1= 0, c2= α, c3= β, c4= c2, d1= α/2, d2= (α + β)/2,
d3=d2, d4=d1 [22].

The above procedure is called the symplectic algorithm of computing 1-D
model atom in the intense field, i.e., the initial value problem in the infinite space
for 1-D TDSE in the intense field is transformed into the initial-boundary value
problem in the finite space using ABC, and this initial-boundary problem is dis-
cretized into the canonical equation for a separable Hamiltonian substituting
the central differential for the spatial partial derivation, and this Hamiltonian
canonical equation can be numerically solved using the symplectic schemes for
the separable Hamilton system.

4. Numerical results

The ionization behaviors of 1-D P–T short-range potential [15, 16]

V0(x) = − U0

cosh2
(α0x)

(15)

can be evaluated in the intense laser field. The P–T potential possesses the fol-
lowing properties,

1. V0(x) is an even function, namely, V0(−x) = V0(x).

2. |V0(x)| falls off exponentially with increasing |x|.
3. There is a finite number of bound levels for given parameters U0 and α0.

4.1. Ionization behavior for the P–T potential with one bound state

To validate that the ABC and the symplectic algorithm presented in this
paper are reasonable and effective for the interaction between the laser and
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atom, the same parameters are chosen as the reference [15,16]. For U0 = 1 and
α0 = 1, there is only one bound state with eigenenergy E0 = −0.5 a.u. for the
P–T potential, and the corresponding normalized eigenfunction ϕo(x) =
1/

√
2coshx, which is chosen as the initial state. The laser field

ε(t)x = ε0x sin(ω0t). (16)

is linear polarized.
In this calculation, the frequency ω0 = 0.2 a.u., the spatial step h = 0.1 a.u.

and the temporal step τ = 0.001 a.u. are chosen. The wave function in the range
[−50 a.u., 50 a.u.] and the wave function’s norm with the time are represented
in figure 1 when the laser intensity ε0 = 0.1 a.u., the boundary is imposed on
600 a.u. and the time is after 16 optical periods pulse. The ionization probabil-
ity of the electron

Pion = 1 − Pb (17)

is computed with the laser intensity for the P–T potential in the laser field for
the frequency ω0 = 0.2 a.u. and the boundary 600 a.u. The results are given in
figure 2, where Pb is the total population of all the bound states. The probabil-
ity density of the electronic wave function

P(x, T ) = |ψ(x, T )|2 (18)

is evaluated and shown in figure 3.
Figure 1(a) is identical to figure 2 in the ref. [15], which shows that the ABC pre-

sented in this paper is reasonable and precise for the interaction between the laser and
atom. The difference of the absolute value of the wave functions between the bound-
aries imposed on 600 a.u. and 700 a.u. is shown in figure 1(b), whose maximum is
within the numerical computing error 10−4. In figure 1(c), the wave function’s norm
with the time is greater than 1 at a few points but does not exceed 10−11, which is far
less than the numerical error 10−4, and less than 1 at the most points. This result shows
that there are some probabilities for electrons to be ionized into the free electron and
they cannot be recombined to the parent atom.

The ionization curve in figure 2 is identical to figure 6 in the ref. [15] and
figure 3 in the ref. [16], which further shows that the ABC presented in this paper
is reasonable and precise and the symplectic algorithm is steady for the interac-
tion between the laser and atom. The extrema points on the ionization curves
correspond to the suppression of 3-photon ionization (A) and 4-photon ioniza-
tion (B), respectively, the reason is that when

nω0 < |E0| + Up, Up = ε2
0/4ω

2
0, (19)

n-photon ionization is suppressed. Furthermore, it is seen that the ionization
curves are similar for the different pulse width, but the ionization amplitude
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Figure 1. (a) Numerical solution |ψ(x)| after 16 light periods for ε0 = 0.1 a.u. and ω0 = 0.2 a.u., (b)
Relative difference in units of 10−5between the truncated solutions with boundaries at x = ±600 a.u.

and x = ±700 a.u. and (c) the wave function’s norm for x = ±700 a.u.
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Figure 2. The ionization probability with the laser peak intensity after four (�), eight (�) and
sixteen (•) light periods for the monochromatic with frequency ω0 = 0.2 a.u.

is only different. The longer the laser pulse width is, the larger the ionization
amplitude is. From figure 3, the wave function spreads outside both boundaries
with increasing the laser intensity. The stronger the laser intensity is, the more
widely the wave function spreads.

Our results show that the ABC and the symplectic algorithm presented in
this paper are reasonable and effective for the interaction between the laser and
atom, and the ABC is simpler than the previous boundary conditions in consid-
ering the physical idea and the mathematical deduced procedure. In next section,
the ionization behaviors of the electron in P–T potential with three bound states
in the laser field are computed, which is more interesting and more meaningful.

4.2. P–T potential with three bound states

The P–T potential for the parameters U0 = 0.7, α0 = 0.4

V0(x) = − 0.7

cosh2
(0.4x)

(20)

possesses the three bound states, whose eigenenergies and corresponding normal-
ized eigenfunctions are,

E0 = −0.5 a.u., E1 = −0.18 a.u.,

E2 = −0.02 a.u., ϕ0(x) = 4√
15π

(cosh(α0x))
−2.5,

ϕ1(x) = 4√
5π
(cosh(α0x))

−1.5tanh(α0x),
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Figure 3. Probability density of wave function with the peak value of the laser intensity.

ϕ2(x) =
√

6
5π

[
(cosh(α0x))

−0.5 − 4
3
(cosh(α0x))

−2.5
]
,

respectively. The ionization behaviors of the P–T potential are computed in the
laser fields

ε(t) =
{
ε0 sin(ω0t) (ton � t � NT0),

0 (NT0 � t � toff ),
(21)

and

ε(t) =
{
ε0 sin2 (

ω0t

2N

)
sin(ω0t) (ton � t � NT0),

0 (NT0 � t � toff ),
(22)

respectively, where T0 = 2π/ω0 is the optical period of the laser field. In the fol-
lowing calculation, 15 optical periods are chosen as the pulse width, the ground
state ϕ0(x) of the P–T potential (20) as the initial state, and the laser frequency
is chosen as the Rabi oscillation frequency between the ground state and the first
excited state, which is ω0 = 0.32 a.u.

(1) Rabi oscillation between the ground state and the first excited state
When the laser intensity is weaker, the Rabi oscillation between the ground

state and the first excited state will be the dominant process, and the transition
rate between these energy levels will speed with the increase of the laser intensity,
which is shown in figure 4. This result is identical to that of the perturbative the-
ory in the traditional quantum mechanics. The oscillation depends strongly on
the pulse-shape, and is suppressed faster for the rectangle pulse-shape than for
the approximate gauss pulse-shape with the increase of the laser intensity.
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Figure 4. Rabi association (a) Irradiated by the approximate gauss pulse (b) Irradiated by the
rectangle pulse.
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(2) Population probability of each state with the laser intensity for the different
pulse-shape

With the increase of the laser intensity, the effect of Rabi oscillation
is weakened gradually and the ionization is strengthened, hence the electron
reaches directly to the ionized continuum state by multi-photon ionization or
tunneling ionization as well as over-barrier ionization. The population probabil-
ity of each bound state

Pi(t) = |〈ϕi(x)|ψ(x, t)〉|2 (23)

changes with the laser intensity for both the rectangle pulse-shape and the
approximate gauss pulse-shape, shown in figure 5, which illustrates that the pop-
ulation probability of the bound states depends obviously on the pulse-shape.
The probability of the electron recombination is greater for the approximate
gauss pulse-shape than the rectangle pulse-shape, and the population of the
bound electron is greater for the approximate gauss pulse-shape than the rect-
angle pulse at the end of the laser pulse-shape at the time after the pulse.

The population probability of the continuum state is

Pc(t) = 1 −
∑
i

Pi(t), (24)

where the summation is over all the bound states and the result is also exhibited
in figure 5. From the figure we can see that the ionization is strengthened with
the increase of the laser intensity. Especially, when the laser intensity reaches
up to the critical intensity of 0.0625 a.u. [12], the electron can freely go through
the potential barrier and be ionized, which is called the over-barrier ionization.
When the laser intensity is greater than this value, the population of the contin-
uum will be greater than that of the bound states, and thus the ionization will
be the dominant process.

(3) Ionization probability with the laser intensity for the different pulse-shape
The ionization probability is

Pion(t) = 1 −
n∑
i

Pi(t) = 1 −
n∑
i

|〈ϕi(x)|ψ(x, t)〉|2. (25)

Figure 6 shows that the ionization probability changes with the time and the
laser intensity for the two different pulse-shapes, 6(a) the approximate gauss
pulse-shape and 6(b) the rectangle pulse-shape. Figure 6(c) is the curve of the
ionization probability in the laser field at the time after the pulse. The figures
illustrate that the ionization probability depends on the laser pulse-shape, but the
total ionization trend is similar and the ionization amplitude is different for the
different pulse-shape.
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Figure 5. Population of the ground state, the first excited state, the second excited state and the ion-
ization continuum in the laser field for the different laser pulse-shape: (a), (c), (e), (g) Irradiated by

the approximate gauss pulse, (b), (d), (f), (h) Irradiated by the rectangle pulse.
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Figure 6. The ionization probability in the laser field: (a) Irradiated by the approximate gauss pulse,
(b) Irradiated by the rectangle pulse.
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Figure 7. Population of the ionization continuum state: (a) Irradiated by the approximate gauss
pulse, (b) Irradiated by the rectangle pulse.

(4) Probability density of the ionization continuum state with the laser intensity
The probability density of the continuum state is

ρc = |ψ∗
c (x, t)ψc(x, t)|, (26)

where ψc(x, t) = ψ(x, t)−∑
i 〈ϕi(x)|ψ(x, t)〉ϕi(x) is the wave function of the ion-

ized continuum state and the summation is over all the bound states. The curve
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of the probability density of the ionized continuum state in the laser field is dis-
played in figure 7, which illustrates that the spread of the electron is enhanced
with the increase of the laser intensity in the space. The electron spreads more
widely for the rectangle pulse-shape than the approximate gauss pulse-shape.

5. Conclusion

The ionization and the recombination of the electron induced by the laser
field depends obviously on the laser pulse-shape, which is the reason why the
different pulse-shape are adopted for the different physical problems. The rectan-
gle pulse is adopted for the research on the ionization, because the electrons are
ionized more for the rectangle pulse than the approximate gauss pulse. However,
the approximate gauss pulse is adopted for the research on the high harmonic
generation, because the high harmonic generation needs the electronic recombi-
nation process and the recombination probability is greater more for the approx-
imation gauss pulse than the rectangle pulse.

The ABC and the symplectic algorithm presented in this paper are reason-
able and effective for 1-D model atom in the intense laser field. The ABC is inde-
pendent of the atomic potential function and fits various model potentials and
its deduced procedure is simple and elementary.
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